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LETTER TO THE EDITOR

Coherent states for parabosons

B Bagchi†§ and D Bhaumik‡‖
† Department of Applied Mathematics, University of Calcutta, 92 Acharya Prafulla Chandra
Road, Calcutta-700 009, India
‡ Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta-700 064, India

Received 10 June 1997

Abstract. Taking into consideration that the Fock space of a parabose oscillator may be
described by bilinear commutation relations involving creation and annihilation operators, we
construct the coherent states for odd and even order parabosons.

Historically the coherent state was first constructed [1] by Schrödinger for a simple
harmonic oscillator having an equispaced eigenspectrum. These states became popular and
found extensive use in different areas of physics namely, nonlinear optics, laser physics,
superfluidity etc [2]. Similar states were later developed by Nieto and Simmons [3] for
general potentials having unequal spacing for the eigenspectrum. Efforts have also been
made to build a coherently superposed number state for parabose oscillators for which the
corresponding creation and annihilation operators satisfy trilinear commutation relations [4].
Recently use has been made of such coherently superposed states to study the nature of the
classical motion [5] of the Calogero–Sutherland–Vasiliev oscillator [6] which is presently the
object of considerable attention [7]. The common feature of both the Calogero–Sutherland–
Vasiliev oscillator and the parabose oscillator is the equispaced eigenspectrum although the
number states spanning the Fock space corresponding to them are quite different.

Recently in the context of Green’s ansatz Macfarlane [8] has attempted to construct
Fock spaces of a parabose oscillator that brings out the significance of bilinear commutation
relations rather than the conventional approach based on the trilinear ones. This has made
the bosonic structure of the parabose Fock space very transparent. In this article we present
a way of constructing the coherent superposition of parabose states by exploiting this new
algebraic structure of parabose Fock space.

The order of parabosons can be either odd or even. For the simplest non-trivial case of
odd orderp = 3, the annihilation operator of parabosons can be transformed to [8]

â =
√

2(α̂ĉ + β̂ĉ†)+ γ̂ ĉ3 (1)

whereα̂, β̂ and γ̂ are a set of bosonic operators obeying

[α̂, α̂†] = 1 [α̂, α̂] = 0 [α̂†, α̂†] = 0

with similar relations forβ̂, β̂†, γ̂ and γ̂ †, while the fermionic operatorŝc = 1
2

(
ĉ1− iĉ2

)
,

ĉ† = 1
2

(
ĉ1+ iĉ2

)
and ĉ3 are constrained by

[ĉi , ĉj ] = 2iεijkĉk i, j, k = 1, 2, 3.
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If the presence of̂γ in (1) is ignored, we get Green’s ansatz for parabosons of order two. It
is easily checked that the operatorsâ and â† obey the usual trilinear commutation relation
conventionally satisfied by parabosons [9].

A simple realization of̂a is possible by choosinĝc, ĉ† and ĉ3 as

ĉ =
(

0 0
1 0

)
ĉ† =

(
0 1
0 0

)
ĉ3 =

(
1 0
0 −1

)
. (2)

This yields a 2× 2 matrix for the annihilation operator of the parabosons

â =
(

γ̂
√

2β̂√
2α̂ −γ̂

)
. (3)

From (1) it is clear that the number states of the parabose oscillator can be constructed
as the product state of the three bosons and of the fermion and so may be labelled by
the number of alpha, beta and gamma bosons and fermions written in that order that
is, by |nα, nβ, nγ ; nc = (0 or 1)〉, nα, nβ, nγ and nc representing the eigenvalues of the
corresponding number operatorsN̂α, N̂β , N̂γ andN̂c.

The Hamiltonian for the parabose oscillator, namely

H = 1
2{â, â†} (4)

then becomes

H = 1
2{â, â†} = N̂α + N̂β + N̂γ + 3

2 (5)

which is identical to that of a three-dimensional oscillator. The conspicuous absence of
the fermionic number operator̂Nc = ĉ†ĉ in the Hamiltonian may be noted. Further, the
parabose states being the product states of more than one bosonic state and a fermionic state
there exists scope for greater reducibility. Indeed all the states constructed in this way have
degeneracy. As written down explicitly in (5) the degeneracies in the case of odd order
parabosons are the same as those for a three-dimensional oscillator while for the even order
parabosons they coincide with those of a two-dimensional oscillator.

The subsidiary condition̂a|0〉 = 0 that is to be satisfied by the vacuum state|0〉 of
the parabosons for the complete specification of the underlying Fock space can then be
easily accomplished by the identification of the product state|s, 0, 0; 0〉, s = 0, 1, 2, . . . ,
as the vacuum state where theα-oscillator has been displaced to a state ofs-quanta.
That this would be sufficient for setting up the Fock space of parabosons of odd order
p = (2s + 3), s = 0, 1, 2, . . . , is transparent from the observation that the number operator
N̂ corresponding to the states built up from|s, 0, 0; 0〉 is given by

N̂ = H − 1
2(2s + 3) s = 0, 1, 2, 3, . . . . (6)

It should be remarked that the minimum odd order parabose Fock space describable in this
way is three which is not a restriction at all sincep = 1 parabose corresponds simply to
the case of the standard harmonic oscillator.

We now turn to constructing the coherent state for parabosons. Since it is clear that the
even order case can be obtained essentially by putting inγ̂ = 0 everywhere in the odd order
case it will suffice to carry out the construction for the odd order only. There are essentially
two equivalent ways to construct the coherent state. We describe both the methods below.
In the first method the displacement operatoreZâ

†
is applied on the vacuum|0〉. Noting

that the explicit expressions for the even and odd states for the parabosons are

|2n〉 ∝ â†2n|0〉 = (2α̂†β̂† + γ̂ †2)n|s, 0, 0; 0〉
|2n+ 1〉 ∝ â†2n+1|0〉 = (2α̂†β̂† + γ̂ †2)n(α̂†ĉ† − γ̂ †)|s, 0, 0; 0〉 (7)
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it is straightforward to obtain the coherent state|Z〉 as

|Z〉 = eZâ† |s, 0, 0; 0〉 =
∞∑
n=0

Zn

n!
(â†)n|s, 0, 0; 0〉

=
∞∑
r=0

Z2r

(2r)!

r∑
mβ=0

r!2mβ

mβ !(r −mβ)!R
s
r,mβ
|s +mβ,mβ, 2r − 2mβ; 0〉

+
∞∑
q=0

Z2q+1

(2q + 1)!

q∑
m′β=0

q!2m
′
β

m′β !(q −m′β)!
×
[√

2(m′β + s + 1)Rsq,m′β |s +m
′
β + 1, m′β, 2q − 2m′β; 1〉

−
√
(2q − 2m′β + 1)Rsq,m′β |s +m

′
β,m

′
β, 2q − 2m′β + 1; 0〉

]
(8)

where

Rsq,mβ =
√
(mβ + s)!mβ !(2q − 2mβ)!

s!
.

It should be remarked that|Z〉 contains both zero and one fermionic states though the one
fermionic state is only associated with the odd para states.

On the other hand, the second construction asks for the coherent state|Z〉 to be an
eigenstate of̂a with eigenvalueZ:

â|Z〉 = Z|Z〉. (9)

Defining the coherent state|Z〉 as the product of the simple bosonic coherent states|zα〉,
|zβ〉, |zγ 〉 corresponding to the respective bosonic operators and realizing that it would be a
column matrix in the fermionic representation we have

â|Z〉 =
(

γ̂
√

2β̂√
2α̂ −γ̂

)(|zα, zβ, zγ 〉
|z′α, z′β, z′γ 〉

)
= Z

(|zα, zβ, zγ 〉
|z′α, z′β, z′γ 〉

)
. (10)

This at once gives rise to the condition

(γ̂ 2+ 2α̂β̂)|zα, zβ, zγ 〉 = Z2|zα, zβ, zγ 〉 (11)

and a similar one for|z′α, z′β, z′γ 〉. Thus it is seen that the bosonic part of|Z〉 is an eigenstate

of (γ̂ 2+2α̂β̂) with eigenvalueZ2. For the individual bosonic states|zi〉, i = α, β, γ we take
the standard coherent states built up from their respective groundstates|ni = 0〉, i = α, β, γ
as an eigenstate of the corresponding annihilation operators:

|zi〉 = (exp(−|zi |)2/2)
∞∑
ni=0

zi
ni

√
ni !
|ni〉 i = α, β, γ. (12)

so that

|Z〉 =


∑

nα,nβ ,nγ

(∏
i=α,β,γ

z
ni
i√
ni !

)
|nα, nβ, nγ ; 0〉∑

n′α,n
′
β ,n
′
γ

(∏
i=α,β,γ

z
′n′
i

i√
n′i !

)
|n′α, n′β, n′γ ; 1〉

 . (13)

By construction therefore|Z〉 is an eigenstate of(γ̂ 2+ 2α̂β̂) and we have by virtue of (11)

Z2 = 2zαzβ + z2
γ . (14)

We now conveniently parametrizezα, zβ, zγ as

zα = λα ei(θ+φ) zβ = λβ ei(θ−φ) zγ = λγ eiθ (15a)
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so that

Z2 = (2λαλβ + λ2
γ ) e2iθ . (15b)

Incorporating these we can write the expression for the coherent state in terms ofλs, θ and
φ. Note that the parameters of the primed ket|z′α, z′β, z′γ 〉 also satisfy similar relations such
as (14) and (15).

The coherent state for the parabosons should be built from the vacuum state which we
have seen to correspond to a product bosonic state with theα-bosonic state being displaced
to a state ofs-quanta. This can be conveniently incorporated in our above mentioned state
(13) if we observe that the operator3̂ defined as

3̂ = α̂†α̂ − β̂†β̂ − ĉ†ĉ =
(
α̂†α̂ − β̂†β̂ 0

0 α̂†α̂ − β̂†β̂ − 1

)
(16)

commutes withâ as well as with(γ̂ 2 + 2α̂β̂). Hence we can require the coherent state to
be a simultaneous eigenstate of these operators. Thus the states which satisfy

3̂|nα, nβ, nγ ; 0〉 = s|nα, nβ, nγ ; 0〉 3̂|n′α, n′β, n′γ ; 1〉 = (s + 1)|n′α, n′β, n′γ , 1〉 (17)

can only be superposed to have the desired coherent state for the parabosons. To carry out
this excercise, we project out the states of definite values of 3̂ from |Z〉 in the following
way [10]

|Z; s〉 = 1

2π

∫ 2π

0
dφ e−i(s+N̂c)φ|Z〉. (18)

We then obtain

|Z; s〉 ≡ |λα, λβ, λγ , θ; s〉

=
 ∑

nβ ,nγ

λα
nβ+sλβ nβ λγ nγ√

(nβ+s)!(nβ )!(nγ )!
eiθ(2nβ+nγ+s)|nβ + s, nβ, nγ ; 0〉∑

n′β ,n′γ
λα

n′
β
+s+1

λβ
n′
β λγ

n′γ√
(n′β+s+1)!(n′β )!(n′γ )!

eiθ(2n′β+n′γ+s+1)|n′β + s + 1, n′β, n
′
γ ; 1〉

 . (19)

Substituting now the condition that the paraboson number states|n〉 are odd or even
according to whethernα + nβ + nγ = n are odd or even, we finally obtain the paraboson
coherent state as

|Z; s〉 =
 ∑∞

m=0

∑m
nβ=0

(λαλβe2iθ )
nβ (λ2

γ e2iθ )
m−nβ√

(nβ+s)!(2m−2nβ)!(nβ )!
|nβ + s, nβ, 2m− 2nβ; 0〉∑∞

m=0

∑m
nβ=0

(λαeiθ )(λαλβe2iθ )
nβ (λ2

γ e2iθ )
m−nβ√

(nβ+s+1)!(2m−2nβ)!(nβ )!
|nβ + s + 1, nβ, 2m− 2nβ; 1〉

 (20)

with the parametrizationZ2 = (2λαλβ + λ2
γ ) e2iθ . It may be noted that the first element in

the expression corresponds to the superposition of even states|2n〉 ∝ |r + s, r,2n− 2r; 0〉
while the second element to that of odd states|2n + 1〉 ∝ |nβ + s + 1, nβ, 2n − 2nβ; 1〉.
The comparison with the states obtained by Sharmaet al [4] cannot be made directly as we
have remarked earlier that this formalism has greater scope for reducibility because of the
introduction of more than one boson in the problem. It may be remarked that the coherent
states for even order parabosons can be readily obtained by puttingzγ = 0 and working
with Z2 = 2zαzβ .
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